Synthesis of Mixed Bisamides of Cyclic ortho-Dicarboxylic Acids

S.Sh. Idrisova
Sumgait State University, Sumgait, 273200 Azerbaidzhan

Received July 31, 2001

Abstract

A procedure was developed for preparation of bisamides of cyclic ortho-dicarboxylic acids by acylation of m - or p-phenylenediamine in acetone solution at room temperature simultaneously with two different anhydrides of cyclic or aromatic ortho-dicarboxylic acids; another process consisted in treating an anhydride of aromatic or cyclic dicarboxylic acid with monoamide of cis-4-cyclohexene-1,2-dicarboxylic acid in dimethylformamide at room temperature.

Amidoacids from aromatic and cyclic ortho-dicarboxylic acids serve as excellent monomers for preparation of heat-resistant polyamides [1].

Symmetrical bisamides were prepared before [2] by acylation of aromatic diamines with anhydrides of cyclic ortho-dicarboxylic acids. The ready formation of bisamides shows that acylation of both amino groups in m-and p-phenylenediamines occurs with similar rates.

We describe here a procedure for preparation of mixed bisamides where the ratio of reactants,
mixing order, and character of solvent play significant role.

A simultaneous mixing of acetone solutions containing equimolar quantities of m - or p-phenylenediamine (II, III) anhydride of cis-4-cyclohexene-1,2dicarboxylic acid (I), and also anhydrides of phthalic (IV), trans-4,5-dibromocyclohexane-1,2-dicarboxylic (V), 1,4,5,6,7,7-hexachloro[2.2.1]hept-5-ene-2,3-dicarboxylic (VI) or 1,2,3,4,11,11-hexachlorotricyclo[6.2.1. ${ }^{5,10}$]undec-2-ene-7,8-dicarboxylic (VII) acids in acetone medium at room temperature results in formation of mixed bisdiamides X-XVII.

Characteristics and elemental analyses of bisamides X-XVII and bisimides XVII-XXV

Compd. no.	Yield, \%	$\mathrm{mp},{ }^{\circ} \mathrm{C}$ (from benzene)	$R_{\text {f }}$	Found, \%				Formula	Calculated, \%				M		Acid number	
				C	H	Hlg	N		C	H	HIg	N	found	calcd.	found	calcd.
X	97	299	0.39	64.38	4.65	-	6.60	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	64.70	4.90	-	6.86	405.5	408.0	270.1	275.8
XI	99	315	0.41	46.00	4.02	27.26	4.82	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$	46.15	4.20	27.97	4.90	566.6	572.0	196.8	197.8
XII	97	321	0.46	43.58	2.48	33.20	4.00	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$	43.34	2.85	33.75	4.44	629.5	631.0	176.8	177.5
XIII	97	348	0.50	47.21	3.42	30.20	4.00	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$	47.30	3.50	31.9	4.00	684.2	685.0	162.4	163.3
XIV	99	281	0.41	65.00	4.79	-	6.80	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6}$	64.08	5.83	-	6.80	405.0	408.0	274.6	275.8
XV	98	301	0.42	46.00	4.03	27.27	4.60	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$	46.15	4.20	27.97	4.90	566.8	572.0	196.8	197.8
XVI	98	296	0.43	43.61	2.66	33.18	4.10	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$	43.74	2.85	33.75	4.44	630.0	631.0	177.0	177.5
XVII	97	334	0.51	47.21	3.48	30.88	4.00	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{6}$	47.30	3.50	31.09	4.09	684.0	685.0	162.8	163.5
XVIII	94	306	0.69	70.08	4.00	-	7.21	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	70.97	4.30	-	7.53	370.2	372.0		
XIX	96	220	0.58	49.33	3.00	29.71	4.98	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	49.62	3.61	30.10	5.26	531.0	532.0		
XX	96	230	0.70	46.01	2.10	35.61	4.44	$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$	46.38	2.35	35.80	4.70	370.0	372.0		
XXI	95	306	0.69	49.25	2.89	32.41	4.01	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$	49.92	3.08	32.82	4.31	647.8	649.0		
XXII	79	230	0.73	70.51	3.92	-	7.04	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$	70.97	4.30	-	7.53	370.2	372.0		
XXIII	99	194	0.67	49.07	2.71	29.22	4.88	$\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	49.62	3.01	30.10	5.26	528.4	532.0		
XXIV	96	202	0.68	45.91	2.11	35.48	4.32	$\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$	46.38	2.35	35.80	4.70	594.4	595.0		
XxV	88	308	0.71	49.69	3.21	32.66	4.14	$\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{Cl}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}$	50.23	2.48	33.02	4.34	643.6	645.0		

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 22003

Bisamides X-XVII were also obtained by reaction of monoamides VIII or IX with anhydrides IV-VI or VII in DMF at room temperature. Since monoamides VIII, IX are insoluble in acetone, their reaction with anhydrides IV-VI or VII occurs only in DMF that ensures homogeneity of the medium. The developed procedure provides a possibility to obtain any mixed bisamides by acylation of m - or p-phenylenediamine varying the order of anhydride addition and the solvent.

The proof of the structure of mixed bisamides X-XVII was performed by transformation thereof into bisimides XVIII-XXV by heating the respective amides in DMF for $5-6 \mathrm{~h}$ at boiling (152°). The characteristics of bisamides \mathbf{X}-XVII and bisimides XVIII-XXV are given in the table.

The structure of the mixed bisamides is also confirmed by IR spectra containing the stretching bands of $\mathrm{C}=\mathrm{C}$ bonds at $1660,1610 \mathrm{~cm}^{-1}$ and of amide group at $3290,3220 \mathrm{~cm}^{-1}$. The stretching vibrations of the carboxy group appear as a strong shoulder at $1720 \mathrm{~cm}^{-1}$. The band at $2600 \mathrm{~cm}^{-1}$ indicates that the carboxy group is linked to the adjacent amide group by an intramolecular hydrogen bond. The presence of carboxy group in compounds X-XVII was also proved by measuring the acid numbers.

EXPERIMENTAL

IR spectra of bisamides X-XVII were recorded on spectrophotometer UR-20 from mulls in mineral oil [3]. The acid numbers were determined by potentiometric titration with the use of LPM-60M device by procedure [4]. The purity of compounds was checked by TLC on silica gel of L5/40 μ grade, eluent benzene-dichloroethane-acetic acid, 4:1.5:1 (by volume), visualizing of spots under UV irradiation [5]. Molecular weight was determined by cryoscopy in camphor [6].

Anhydride of cis-4-cyclohexene-1,2-dicarboxylic acid was obtained as in [7], anhydride of trans-4,5-di-bromocyclohexane-1,2-dicarboxylic along procedure [8], anhydride of 1,4,5,6,7,7-hexachloro[2.2.1]hept-5-ene-2,3-dicarboxylic acid was prepared by method [9], anhydride of $1,2,3,4,11,11$-hexachlorotricyclo[6.2.1.0 ${ }^{5,10}$]undec-2-ene-7,8-dicarboxylic acid by method [10].

Synthesis of cis-4-cyclohexene-1,2-dicarboxylic acid monoamides VIII, IX. To a solution of 0.1 mol of anhydride \mathbf{I} in 20 ml of acetone was added at vigorous stirring a solution of 0.1 mol of meta-(II) or para-(IV) phenylenediamine in 100 ml of acetone.

The separated crystals were filtered off, washed with acetone, and dried.
cis-4-Cyclohexene-1,2-dicarboxylic acid N-(maminophenyl)amide (VIII). Yield 99%. mp $189^{\circ} \mathrm{C}$ (from benzene). $R_{\mathrm{f}} 0.30$. Found, \%: C 64.05; H 5.91 ; N 10.21. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 64.62; H 6.15; N 10.77.
cis-4-Cyclohexene-1,2-dicarboxylic acid N-(p aminophenyl)amide (IX). Yield 98%. mp $202^{\circ} \mathrm{C}$ (from benzene). $R_{\mathrm{f}} 0.31$. Found, $\%: \mathrm{C} 63.91$; H 5.88 ; N 10.29. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$. Calculated, \%: C 64.62; H 6.15; N 10.77.

Synthesis of mixed bisamides X-XVII. (a) To a solution of 0.1 mol of anhydride (I) and 0.1 mol of anhydride IV-VI or VII in 300 ml of acetone at room temperature while vigorous stirring was added solution of 0.1 mol of meta-(II) or para-(IV) phenylenediamine in 50 ml of acetone. The mixture was left standing for 12 h till crystals precipitated. The precipitate was filtered off, washed with acetone, dried, and analyzed. The characteristics of bisamides \mathbf{X} XVII are given in table.
(b) To a vigorously stirred solution of 0.1 mol of monoamide VIII or IX in 300 ml DMF was gradually added at room temperature 0.1 mol of anhydride IV-VII dissolved in 50 ml of DMF. The mixture was left standing for 12 h . The precipitated crystals were filtered off, dried, and recrystallized from benzene. Yield of bisamides X-XVII 96-99\%. Characteristics of compounds X-XVII prepared along procedures (a) and (b) are identical.

Synthesis of mixed bisimides XVIII-XXV. A mixture of 0.1 mol of mixed bisamide X-XVII and 200 ml of DMF was heated to $152^{\circ} \mathrm{C}$ for $5-6 \mathrm{~h}$. The cooled mixture was poured into ice water at stirring. The separated crystals were filtered off, washed with distilled water, and recrystallized from methanol. Yield of bisimides XVIII-XXV 79-96\%, their characteristics are given in table.

REFERENCES

1. Zhubanov, B.A., Arkhipova, I.V., and Almabekov, O.A., Novye termostoikie geterotsiklicheskie polimery (New Thermoresistal Polymers), Alma-Ata, 1979.
2. Salakhov, M.S., Musaeva, N.F., Karaeva, A.K., and Gasanova, A.A., Azerb. Khim. Zh., 1982, no. 5, p. 55.
3. Nakanisi, K., Infrakrasnye spektry i stroenie organicheskikh soedinenii (IR Sprctra and Organic Compounds Structure), Moscow: Mir, 1965, 216 p.
4. Salakhov, M.S., Israfilov, A.I., Shamilov, T.O., Guseinov, M.M., and Kucherov, V.F., Zh. Org. Khim., 1971, vol. 7, p. 1402.
5. Akhrem, A.A. and Kuznetsova, A.I., Tonkosloinaya khromatografiya (Thin-Layer Chromatography), Moscow: Nauka, 1965, pp. 25, 49.
6. Nekrasov, V.V., Rukovodstvo k malomи praktikumи po organicheskoi khimii (Practical Organic Chemistry: Concise Guide to Experiments), Moscow: Khimiya, 1964, p. 66.
7. Nazarov, N.N. and Kucherov, V.F., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1952, no. 1, p. 289.
8. Kucherov, V.F.,Shabanov, A.L., and Onishchenko, A.S., Izv., Akad. Nauk SSSR, Otd. Khim. Nauk, 1963, p. 844.
9. Guseinov, M.M., Kichieva, D.D., Treivus, E.M., and Dzhafarova, M.G., Azerb. Khim. Zh., 1965, no. 5, p. 27.
10. Salakhov, M.S., Guseinov, M.M., and Kyazimova, T.G., DAN Azerb. SSR, 1966, vol. 22, p. 28.
